

Ultrananocrystalline Diamond: Tuning Materials Properties via Plasma Chemistry

J.A. Carlisle, L.A. Curtiss, J.E. Gerbi, J. Birrell*, D.M. Gruen, O. Auciello, J. Schlueter, A. Sumant, and P. Zapol

Materials Science Division, Argonne National Laboratory, 9700 South Cass Avenue, Argonne, IL 60439

* Department of Materials Science and Engineering, University of Illinois at Urbana Champaign, 1304 W. Green Street, Urbana, IL, 61801

ABSTRACT

Ultra-nanocrystalline diamond (UNCD) films are synthesized by a microwave plasma enhanced chemical vapor deposition (MPCVD) method using a CH₄ (1%)/Ar (99%) gas mixture. Tuning the electrical and structural characteristics of the films is performed via substituting a percentage of the Ar with 1-20% N or H. Electron microscopies indicate a change in grain size and shape, and xray spectroscopies indicate local changes in bonding structure. Most strikingly, the electrical conductivity of the nitrogen-doped UNCD films increases by five orders of magnitude (up to 143 W-1xcm-1) with increasing nitrogen content. Conductivity and Hall measurements indicate that these films have the highest n-type conductivity and carrier concentration demonstrated for phase-pure diamond thin films. Grain boundary conduction is proposed to explain the remarkable transport properties of these films.

Control of Structural Properties in UNCD

Surface Morphology of Plain UNCD

 The bulk structure & surface morphology can be controlled by altering the growth plasma chemistry

20 %

Nitrogen Growth: UNCD Structure

 Nitrogen doping of UNCD alters the nanostructure of the film, in turn affecting its materials properties.

- UNCD grains = phase pure diamond
- UNCD grain boundaries = disordered C

Control of Plasma Growth Species with Nitrogen

Addition of N (1 -20%) increases C₂ dimer and CN specie concentrations

Nitrogen in Plasma (%)

Control of Electronic Properties

- N doping: UNCD becomes semimetallic with grain boundaryconductivity
- H doping: UNCD becomes insulating
- The conductivity is a strong fcn. of % N in plasma.
- Results similar to heavily boron-doped diamond

Control of Structural Composition

- Moderate increase of sp²/ sp³ bonded C ratio
- TEM indicates pure diamond structure in grains
- May indicate grain boundary character is changing

Acknowledgement: Advanced Light Source, Lawrence Berkeley National Laboratory

Summary/Future work

In summary, control over structural and electronic UNCD properties has been demonstrated via N and H doping. Doping with N has in particular proven to be useful for producing highly-conductive, n-type UNCD. We propose that grain boundary conduction involving carbon p-states is responsible for the high electrical conductivities in these films.

Near-future work will include increasing the electronic capabilities of UNCD via doping with B and P and fabricating initial electronic devices, simultaneously controlling the film structure with N or H.

FWP 57504